Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(11): 4455-4462, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458998

RESUMO

The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a "bird's eye" view of signaling activity through mapping proteoform landscapes in a pathway. Using this approach, the overall stoichiometry and distribution of 0-4 phosphorylations on MEK1 was determined in a cellular model of drug-resistant metastatic melanoma. This approach can be generalized to other multiply modified proteoforms, for which PTM combinations are key to their function and drug action.


Assuntos
Mitógenos , Proteínas Quinases , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional , Peptídeos e Proteínas de Sinalização Intercelular , Íons
2.
Sci Adv ; 10(8): eadk7416, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381828

RESUMO

Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize because of cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wild type, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1- 2, and 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wild-type chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate-derived austinols provides unexpected insight into routes of terpene synthesis in fungi.


Assuntos
Aspergillus nidulans , Fosfatos de Poli-Isoprenil , Sesquiterpenos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Esqualeno , Terpenos/metabolismo
3.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905136

RESUMO

Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize due to cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a new twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wildtype, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1-2, 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wildtype chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate derived austinols provides unexpected insight into routes of terpene synthesis in fungi.

4.
Proc Natl Acad Sci U S A ; 120(28): e2302064120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406101

RESUMO

Type II topoisomerases transiently cleave duplex DNA as part of a strand passage mechanism that helps control chromosomal organization and superstructure. Aberrant DNA cleavage can result in genomic instability, and how topoisomerase activity is controlled to prevent unwanted breaks is poorly understood. Using a genetic screen, we identified mutations in the beta isoform of human topoisomerase II (hTOP2ß) that render the enzyme hypersensitive to the chemotherapeutic agent etoposide. Several of these variants were unexpectedly found to display hypercleavage behavior in vitro and to be capable of inducing cell lethality in a DNA repair-deficient background; surprisingly, a subset of these mutations were also observed in TOP2B sequences from cancer genome databases. Using molecular dynamics simulations and computational network analyses, we found that many of the mutations obtained from the screen map to interfacial points between structurally coupled elements, and that dynamical modeling could be used to identify other damage-inducing TOP2B alleles present in cancer genome databases. This work establishes that there is an innate link between DNA cleavage predisposition and sensitivity to topoisomerase II poisons, and that certain sequence variants of human type II topoisomerases found in cancer cells can act as DNA-damaging agents. Our findings underscore the potential for hTOP2ß to function as a clastogen capable of generating DNA damage that may promote or support cellular transformation.


Assuntos
Mutagênicos , Neoplasias , Humanos , Inibidores da Topoisomerase II/farmacologia , Etoposídeo/farmacologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Dano ao DNA , DNA
5.
Nat Chem Biol ; 19(7): 846-854, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36879060

RESUMO

Natural products research increasingly applies -omics technologies to guide molecular discovery. While the combined analysis of genomic and metabolomic datasets has proved valuable for identifying natural products and their biosynthetic gene clusters (BGCs) in bacteria, this integrated approach lacks application to fungi. Because fungi are hyper-diverse and underexplored for new chemistry and bioactivities, we created a linked genomics-metabolomics dataset for 110 Ascomycetes, and optimized both gene cluster family (GCF) networking parameters and correlation-based scoring for pairing fungal natural products with their BGCs. Using a network of 3,007 GCFs (organized from 7,020 BGCs), we examined 25 known natural products originating from 16 known BGCs and observed statistically significant associations between 21 of these compounds and their validated BGCs. Furthermore, the scalable platform identified the BGC for the pestalamides, demystifying its biogenesis, and revealed more than 200 high-scoring natural product-GCF linkages to direct future discovery.


Assuntos
Produtos Biológicos , Genômica , Metabolômica , Família Multigênica , Fungos/genética
6.
FEMS Microbiol Ecol ; 97(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34021563

RESUMO

Microbial communities can have dramatically different compositions even among similar environments. This might be due to the existence of multiple alternative stable states, yet there exists little experimental evidence supporting this possibility. Here, we gathered a large collection of absolute population abundances capturing population dynamics in one- to four-strain communities of soil bacteria with a complex life cycle in a feast-or-famine environment. This dataset led to several observations: (i) some pairwise competitions resulted in bistability with a separatrix near a 1:1 initial ratio across a range of population densities; (ii) bistability propagated to multi-stability in multispecies communities; and (iii) replicate microbial communities reached different stable states when starting close to initial conditions separating basins of attraction, indicating finite-sized regions where the dynamics are unpredictable. The generalized Lotka-Volterra equations qualitatively captured most competition outcomes but were unable to quantitatively recapitulate the observed dynamics. This was partly due to complex and diverse growth dynamics in monocultures that ranged from Allee effects to nonmonotonic behaviors. Overall, our results highlight that multi-stability might be generic in multispecies communities and, combined with ecological noise, can lead to unpredictable community assembly, even in simple environments.


Assuntos
Microbiota , Modelos Biológicos , Bactérias/genética , Dinâmica Populacional
7.
J Phys Chem C Nanomater Interfaces ; 124(32): 17476-17484, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32904867

RESUMO

Several ternary "Janus" metal dichalcogenides such as {Mo,Zr,Pt}-SSe have emerged as candidates with significant potential for optoelectronic, piezoelectric, and thermoelectric applications. SnSSe, a natural option to explore as a thermoelectric given that its "parent" structures are SnS2 and SnSe2 has, however, only recently been shown to be mechanically stable. Here, we calculate the lattice thermal conductivities of the Janus SnSSe monolayer along with those of its parent dicalchogenides. The phonon frequencies of SnSSe are intermediate between those of SnSe2 and SnS2; however, its thermal conductivity is the lowest of the three and even lower than that of a random Sn[S0.5Se0.5]2 alloy. This can be attributed to the breakdown of inversion symmetry and manifests as a subtle effect beyond the reach of the relaxation-time approximation. Together with its low favorable power factor, its thermal conductivity confirms SnSSe as a good candidate for thermoelectric applications.

8.
Phys Chem Chem Phys ; 22(34): 18989-19008, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32812596

RESUMO

The global energy crisis demands the search for new materials for efficient thermoelectric energy conversion. Theoretical predictive modelling with experiments can expedite the global search of novel and ecoconscious thermoelectric materials. The efficiency of thermoelectric materials depends upon the thermoelectric figure of merit (ZT). In this perspective, we discuss the theoretical model to calculate thermoelectric properties. Different scattering mechanisms of electrons and phonons are calculated using a simple model for the fast prediction of thermoelectric properties. Thermoelectric properties based on the simple model have shown more than 90% agreement with the experimental values. Possibility to optimize the figure of merit by alloying, defects, nanostructuring and band convergence is also discussed for layered chalcogenides of tin. In the case of doped materials, ion-impurity scattering is found to be dominating over electron-phonon scattering and the power factor can be optimized by tuning the former scattering rate. For phonon transport, alloy scattering is found to be the most dominating among all other scattering mechanisms. Theoretically, it is found that in the temperature range between 300 K and 800 K, SnSe0.70S0.30 has the highest ZT with an efficiency of 17.20% with respect to Carnot efficiency. There could be 53.8% enhancement of the device efficiency in SnSe0.70S0.30 compared to experimentally reported SnSe0.50S0.50 in the medium temperature range (300 K to 800 K). Possible routes to achieve the best ZT in the medium temperature range are also discussed in this perspective.

9.
Heliyon ; 4(12): e01022, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30582044

RESUMO

Fractal like morphology is a very interesting feature during electrodeposition of metals and shows pattern transition with changes in deposition conditions. In this article, we have explained the thermal effects in the two dimensional DLA morphology on the basis of thermal free energy and another free energy barrier resulting from the electric field. The results obtained from free energy hypothesis are consistent with experiments showing the transition voltage for electrodeposition of copper ions to be around 6 V.

10.
ACS Chem Biol ; 13(5): 1142-1147, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29631395

RESUMO

Filamentous fungi are prolific producers of secondary metabolites with drug-like properties, and their genome sequences have revealed an untapped wealth of potential therapeutic leads. To better access these secondary metabolites and characterize their biosynthetic gene clusters, we applied a new platform for screening and heterologous expression of intact gene clusters that uses fungal artificial chromosomes and metabolomic scoring (FAC-MS). We leverage FAC-MS technology to identify the biosynthetic machinery responsible for production of acu-dioxomorpholine, a metabolite produced by the fungus, Aspergilllus aculeatus. The acu-dioxomorpholine nonribosomal peptide synthetase features a new type of condensation domain (designated CR) proposed to use a noncanonical arginine active site for ester bond formation. Using stable isotope labeling and MS, we determine that a phenyllactate monomer deriving from phenylalanine is incorporated into the diketomorpholine scaffold. Acu-dioxomorpholine is highly related to orphan inhibitors of P-glycoprotein targets in multidrug-resistant cancers, and identification of the biosynthetic pathway for this compound class enables genome mining for additional derivatives.


Assuntos
Aspergillus/genética , Cromossomos Artificiais , Espectrometria de Massas/métodos , Morfolinas/metabolismo , Vias Biossintéticas/genética , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...